Abstract

AbstractLet E be an elliptic curve defined over ℚ, of conductor N and without complex multiplication. For any positive integer l, let ϕl be the Galois representation associated to the l-division points of E. From a celebrated 1972 result of Serre we know that ϕl is surjective for any sufficiently large prime l. In this paper we find conditional and unconditional upper bounds in terms of N for the primes l for which ϕl is not surjective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.