Abstract

Volumetric loading is often a critical parameter in process design rather than weight. In this work, we have assessed the volumetric textural parameters of purified single-walled carbon nanotube materials (SWCNT). Purification is a necessary step in the SWCNT manufacturing process as they contain a metal residue inherent to their synthesis. Nitric acid treatment was applied for both metal removal and carbon structural/textural modification. Results show that the volumetric BET area is enhanced in ca. 500% with respect to the non-purified SWCNT (ca. 160% per mass), where both volumetric microporosity and external surfaces are enhanced. For such optimal material, the SWCNT structure remains well-defined though changes are observed (densification, more interstitial space, cutting of the tubes and amorphous carbon being formed). Three intrinsic factors contribute to the volumetric BET's enhancement: the bulk density and the mass-based surface parameters; microporous and external surfaces. The bulk density is enhanced due to a structural densification, thus more carbon is available per volume despite heavier metals (Ni, Y) being removed. One indirect factor, the MOx-removal effect, affects both intrinsic surface parameters. After studying this effect in depth, it was found that the microporosity is truly and largely enhanced due to newly-formed interstitial space. The external surface area is slightly improved but to a much lesser extent than microporosity. Overall, the factors dominating the volumetric BET for our system and applied experimental conditions are the bulk density, microporosity and MOx-removal effect. Concerning the conventional mass-based BET, microporosity and MOx-removal effect are the dominating factors. The study also reveals that mesoporosity control in these materials is possible, in comparison to previous studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call