Abstract

This work focuses on the support effect of the performances of Co based catalysts for acetic acid steam reforming. SBA-15, a well ordered hexagonal mesoporous silica structure, and CeO2 have been selected as the supports, with the impact of chromium addition also being investigated. Better acetic acid steam reforming performances have been recorded for CeO2 compared to SBA-15 supported catalysts and, in particular, the 7Co/CeO2 catalyst showed the highest values of acetic acid conversions with enhanced H2 yields below 480 °C, in comparison to the other investigated catalytic formulations. In addition, more pronounced coke depositions and acetone concentrations have been obtained with CeO2 supported catalysts, due to the tendency of ceria to catalyse the ketonization reaction. Chromium addition to Co/SBA-15 catalysts led to an enhancement in the activity towards acetic acid steam reforming, while on CeO2 supported catalysts no improvement in the catalysts’ activity was observed. However, on both SBA-15 and CeO2 supported catalysts, Cr addition reduced the amount of coke deposited on the catalysts surface.

Highlights

  • The increasing levels of CO2 in the atmosphere, along with the emission of other harmful pollutants (NOx and SO2 ) has led to serious environmental concerns, with experts searching for low-environmental impact sources to solve the current energy crisis

  • The SSA analysis, carried out on the supports and the examined catalytic formulations, are given in Table 1 in which it is possible to note that the SBA-15 samples present higher

  • The chromium addition to 7Co/CeO2 induces a drastic decrease in the specific surface area of the catalysts compared to the SBA-15 based catalysts

Read more

Summary

Introduction

The increasing levels of CO2 in the atmosphere, along with the emission of other harmful pollutants (NOx and SO2 ) has led to serious environmental concerns, with experts searching for low-environmental impact sources to solve the current energy crisis. Renewable resources are extremely promising, while the use of biomass as feedstock is encouraged due to its sustainability, wide availability and abundance [1]. The use of biomass-derivate compounds (including acetic acid) as a hydrogen source has the potential to reduce the current dependence on fossil fuels [2,3]. Hydrogen is regarded as one of the energetic vectors of the future and its production via reforming of bio-fuels has been widely studied in current literature [4,5]. The majority of produced hydrogen comes from the conversion of fossil fuels, while only less than 1% hydrogen derives from renewable sources [6]. Among the available feedstocks for hydrogen generation, acetic acid is a promising alternative, with a growing market production expected to reach 18 million tons by 2020 [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call