Abstract
The author has established that if [λn] is a convex sequence such that the series Σn -1λn is convergent and the sequence {K n} satisfies the condition |K n|=O[log(n+1)]k(C, 1),k⩾0, whereK n denotes the (R, logn, 1) mean of the sequence {n log (n+1)a n}, then the series Σlog(n+1)1-kλn a n is summable |R, logn, 1|. The result obtained for the particular casek=0 generalises a previous result of the author [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.