Abstract

We investigate certain natural connections between sub-Riemannian geometry and hyperbolic dynamical systems. In particular, we study dynamically defined horizontal distributions which split into two integrable ones and ask: how is the energy of a sub-Riemannian geodesic shared between its projections onto the integrable summands? We show that if the horizontal distribution is the sum of the strong stable and strong unstable distributions of a special type of a contact Anosov flow in three dimensions, then for any short enough sub-Riemannian geodesic connecting points on the same orbit of the Anosov flow, the energy of the geodesic is shared equally between its projections onto the stable and unstable bundles. The proof relies on a connection between the geodesic equations and the harmonic oscillator equation, and its explicit solution by the Jacobi elliptic functions. Using a different idea, we prove an analogous result in higher dimensions for the geodesic flow of a closed Riemannian manifold of constant negative curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.