Abstract

The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems. Despite of its success in practice, the convergence properties of the standard ADMM for minimizing the sum of $N$ $(N\geq 3)$ convex functions with $N$ block variables linked by linear constraints, have remained unclear for a very long time. In this paper, we present convergence and convergence rate results for the standard ADMM applied to solve $N$-block $(N\geq 3)$ convex minimization problem, under the condition that one of these functions is convex (not necessarily strongly convex) and the other $N-1$ functions are strongly convex. Specifically, in that case the ADMM is proven to converge with rate $O(1/t)$ in a certain ergodic sense, and $o(1/t)$ in non-ergodic sense, where $t$ denotes the number of iterations. As a by-product, we also provide a simple proof for the $O(1/t)$ convergence rate of two-block ADMM in terms of both objective error and constraint violation, without assuming any condition on the penalty parameter and strong convexity on the functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call