Abstract

Given that a graph G = (V, E). By an edge-antimagic vertex labeling of graph, we mean assigning labels on each vertex under the label function f : V → {1, 2, . . . , |V (G)|} such that the associated weight of an edge uv ∈ E(G), namely w(xy) = f(x) + f(y), has distinct weight. A path P in the vertex-labeled graph G is said to be a rainbow path if for every two edges xy, x′y ′ ∈ E(P) satisfies w(xy) ̸= w(x ′y ′ ). The function f is called a rainbow antimagic labeling of G if for every two vertices x and y of G, there exists a rainbow x − y path. When we assign each edge xy with the color of the edge weight w(xy), thus we say the graph G admits a rainbow antimagic coloring. The rainbow antimagic connection number of G, denoted by rac(G), is the smallest number of colors induced from all edge weight of antimagic labeling. In this paper, we will study the rac(G) of the corona product of graphs. By the corona product of graphs G and H, denoted by G ⊙ H, we mean a graph obtained by taking a copy of graph G and n copies of graph H, namely H1, H2, ..., Hn, then connecting vertex vi from the copy of graph G to every vertex on graph Hi , i = 1, 2, 3, . . . , n. In this paper, we show the exact value of the rainbow antimagic connection number of Tn ⊙ Sm where Tn ∈ {Pn, Sn, Sn,p, Fn,3}.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.