Abstract

The Hopf bifurcation, saddle connection loop bifurcation and Poincaré bifurcation of the generalized Rayleigh–Liénard oscillator Ẍ+aX+2bX3+ε(c3+c2X2+c1X4+c4Ẋ2)Ẋ=0 are studied. It is proved that for the case a<0, b>0 the system has at most six limit cycles bifurcated from Hopf bifurcation or has at least seven limit cycles bifurcated from the double homoclinic loop. For the case a>0, b<0 the system has at most three limit cycles bifurcated from Hopf bifurcation or has three limit cycles bifurcated from the heteroclinic loop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.