Abstract
Social media activity in different geographic regions can expose a varied set of temporal patterns. We study and characterize diurnal patterns in social media data for different urban areas, with the goal of providing context and framing for reasoning about such patterns at different scales. Using one of the largest datasets to date of Twitter content associated with different locations, we examine within-day variability and across-day variability of diurnal keyword patterns for different locations. We show that only a few cities currently provide the magnitude of content needed to support such across-day variability analysis for more than a few keywords. Nevertheless, within-day diurnal variability can help in comparing activities and finding similarities between cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International AAAI Conference on Web and Social Media
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.