Abstract
The past decade has witnessed a boom of wireless communications which necessitate an increasing improvement of data rate, error-rate performance, bandwidth efficiency, and information security. In this work, we propose a quadrature (IQ) differential chaos-shift keying (DCSK) modulation scheme for the application in cognitive radio (CR), named CR-IQ-DCSK, which offers the above improvement. Chaotic signal is generated in frequency domain and then converted into time domain via an inverse Fourier transform. The real and imaginary components of the frequency-based chaotic signal are simultaneously used in in-phase and quadrature branches of an IQ modulator, where each branch conveys two bits by means of a DCSK-based modulation. Schemes and operating principle of the modulator and demodulator are proposed and described. Analytical BER performance for the proposed schemes over a typical multipath Rayleigh fading channel is derived and verified by numerical simulations. Results show that the proposed scheme outperforms DCSK, CDSK and performs better with the increment of the number of channel paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.