Abstract

An investigation of the turbulent flow structure over a progressive water wave, as well as the structure of the wave-induced flow field in a transformed wave-following frame, is reported. Experimental results are given for a free-stream velocity of 2·4 m s−1 over a 1 Hz mechanically generated deep-water wave. The velocity components were measured with a cross hot-film probe oscillating in a transformed wave-following frame. The amplitude and phase of the wave-induced velocity components are deduced by correlation to the generated water wave. The mean flow tends to follow the wave form so that the water wave should not be regarded as surface roughness. The mean velocity profile is basically log-linear and is similar to that over a smooth plate, because ripples riding on the waves do not produce sufficient roughness to interfere with the wind field. The wave-induced motion in the free stream is irrotational; but, in the boundary layer, it has strong shear behaviour related to the wave-associated Reynolds stress. The shear stress production as well as the energy production from the mean flow is concentrated near the interface. A phase jump of 180° in the wave-induced turbulent Reynolds stresses in the middle of the boundary layer was observed. The relationships between the induced turbulent Reynolds stresses and the induced velocities are of an eddy-viscosity type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call