Abstract
Abstract Diamond-like carbon films have been prepared by KrF excimer pulsed-laser deposition at a wavelength of 248 nm, with power densities ranging from 0.05 to 1.85 GW cm−2, in vacuum and in a nitrogen atmosphere. Structural analysis was performed first by Fourier transform infrared spectroscopy, which shows that the films are hydrogen free and become transparent above a threshold power density. The band features indicate that the structure of the films is disordered. Combined visible and ultraviolet (UV) Raman spectroscopies allowed us to enhance the scattering cross-section from sp3-coordinated carbon with respect to the sp2 signals. In visible Raman spectra the D and G peaks are found; in UV Raman spectra, besides the blue-shifted G peak and the T peak, a further peak, not reported before, at about 1400 cm−2 is evident in spectra from films deposited in vacuum at low fluences. An analysis of the evolution of Raman fitting parameters with increasing deposition power density shows that above a threshol...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.