Abstract

We discuss the synthesis, characterization, and comprehensive study of Ba-122 single crystals with various substitutions and various superconducting transition temperatures. We use five complementary techniques to obtain a self-consistent set of data on the superconducting properties of Ba-122. A major conclusion of our work is the coexistence of two superconducting condensates differing in the electron–boson coupling strength. The two gaps that develop in distinct Fermi surface sheets are nodeless in the kxky plane and exhibit s-wave symmetry; the two-band model suffices for the description of the main parameters of the superconducting state. A moderate interband coupling and a considerable Coulomb repulsion in the description of the two-gap superconducting state of barium pnictides favor the s++ model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.