Abstract
Brane tilings provide the most general framework in string and M-theory for matching toric Calabi-Yau singularities probed by branes with superconformal fixed points of quiver gauge theories. The brane tiling data consists of a bipartite tiling of the torus which encodes both the classical superpotential and gauge-matter couplings for the quiver gauge theory. We consider the class of tilings which contain only tiles bounded by exactly four edges and present a method for generating any tiling within this class by iterating combinations of certain graph-theoretic moves. In the context of D3-branes in IIB string theory, we consider the effect of these generating moves within the corresponding class of supersymmetric quiver gauge theories in four dimensions. Of particular interest are their effect on the superpotential, the vacuum moduli space and the conditions necessary for the theory to reach a superconformal fixed point in the infrared. We discuss the general structure of physically admissible quadrilateral brane tilings and Seiberg duality in terms of certain composite moves within this class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.