Abstract

We present a simple model for the underlying structure of protein-protein pairwise interaction graphs that is based on the way in which proteins attach to each other in experiments such as yeast two-hybrid assays. We show that data on the interactions of human proteins lend support to this model. The frequency of the number of connections per protein under this model does not follow a power law, in contrast to the reported behaviour of data from large-scale yeast two-hybrid screens of yeast protein-protein interactions. Sampling sub-graphs from the underlying graphs generated with our model, in a way analogous to the sampling performed in large-scale yeast two-hybrid searches, gives degree distributions that differ subtly from the power law and that fit the observed data better than the power law itself. Our results show that the observation of approximate power law behaviour in a sampled sub-graph does not imply that the underlying graph follows a power law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.