Abstract

This paper studies the “internal structure” of the periodic solutions of differential equations with the aim of stating when they are constant functions. Yorke [21] and Lasota and Yorke [10] are the first works which show the existence, uńder certain conditions, of a lower bound for the period of non-constant solutions. As applications of the general results proved in Section 1 we obtain a negative solution to an open problem of Browder, the discovery that the periodic solutions ensured by Vidossich [17, Theorem 3.16], are constant functions, and conditions under which the periodic solutions of hyperbolic and parabolic equations are constant functions. Finally, we note that Li [11] applies the results of Section 1 to differential equations with delay. Various result of this paper point out a strong connection between the existence of periodic solutions of small period of x′ = f( x) and the fact that the origin belongs to the range of f. This situation is explored in [19].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.