Abstract

AbstractWe prove that the Ellentuck, Hechler and dual Ellentuck topologies are perfect isomorphic to one another. This shows that the structure of perfect sets in all these spaces is the same. We prove this by finding homeomorphic embeddings of one space into a perfect subset of another. We prove also that the space corresponding to eventually different forcing cannot contain a perfect subset homeomorphic to any of the spaces above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.