Abstract

We consider the characteristic subgroup CS(G), generated by the nonnormal cyclic subgroups of the group G. A group G is called a generalized Dedekind group if \(CS(G)\neq G\), and those among them with nontrivial CS(G) are called generalized Hamiltonian groups. Such groups are torsion groups of nilpotency class two. The commutator subgroup is cyclic of p-power or two times p-power order and always contained in CS(G). The quotient G/CS(G) is a locally cyclic p-group. We give an example of an infinite generalized Hamiltonian p-group with G/CS(G) locally cyclic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.