Abstract
In this paper we consider two functions related to the arithmetic and geometric means of element orders of a finite group, showing that certain lower bounds on such functions strongly affect the group structure. In particular, for every prime p, we prove a sufficient condition for a finite group to be p-nilpotent, that is, a group whose elements of p ′ -order form a normal subgroup. Moreover, we characterize finite cyclic groups with prescribed number of prime divisors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.