Abstract

Finite-sheeted covering mappings onto compact connected groups are studied. We show that for a covering mapping from a connected Hausdorff topological space onto a compact (in general, non-abelian) group there exists a topological group structure on the covering space such that the mapping becomes a homomorphism of groups. To prove this fact we construct an inverse system of covering mappings onto Lie groups which approximates the given covering mapping. As an application, it is shown that a covering mapping onto a compact connected abelian group G must be a homeomorphism provided that the character group of G admits division by degree of the mapping. We also get a criterion for triviality of coverings in terms of means and prove that each finite covering of G is equivalent to a polynomial covering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.