Abstract

A simple graph \(G\) is called a compact graph if \(G\) contains no isolated vertices and for each pair \(x\), \(y\) of non-adjacent vertices of \(G\), there is a vertex \(z\) with \(N(x)\cup N(y)\subseteq N(z)\), where \(N(v)\) is the neighborhood of \(v\), for every vertex \(v\) of \(G\). In this paper, compact graphs with sufficient number of edges are studied. Also, it is proved that every regular compact graph is strongly regular. Some results about cycles in compact graphs are proved, too. Among other results, it is proved that if the ascending chain condition holds for the set of neighbors of a compact graph \(G\), then the descending chain condition holds for the set of neighbors of \(G\).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.