Abstract
Molecular gas in the interior of the Orion superbubble consists of sheets, filaments, and partial shells in which the active star forming dense cloud cores are embedded. The main body of the Orion A and B clouds and at least 14 smaller clouds in Orion region are cometary in appearance suggesting strong interaction with massive stars in the Orion OB association. While the small scale (< 1 pc) structure of the clouds may be determined primarily by internal magnetic fields, gravity, and the effects of outflows from young stellar objects, the large scale morphology and kinematics is affected by the energy injected by massive stars. Supernovae, stellar winds, and radiation have compressed, accelerated, ablated, and dispersed molecular gas over the last 107 years. Most GMC/OB star complexes in the Solar neighborhood exhibit morphological and kinematic properties similar to the Orion region. We argue that energy injection by massive stars plays a vital role in the evolution of the ISM and may be responsible for much of the observed large-scale structure and kinematics of molecular clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.