Abstract

AbstractThe normal mode instability study of a steady Rossby‐Haurwitz wave is considered both theoretically and numerically. This wave is exact solution of the nonlinear barotropic vorticity equation describing the dynamics of an ideal fluid on a rotating sphere, as well as the large‐scale barotropic dynamics of the atmosphere. In this connection, the stability of the Rossby‐Haurwitz wave is of considerable mathematical and meteorological interest. The structure of the spectrum of the linearized operator in case of an ideal fluid is studied. A conservation law for perturbations to the Rossby‐Haurwitz wave is obtained and used to get a necessary condition for its exponential instability. The maximum growth rate of unstable modes is estimated. The orthogonality of the amplitude of a non‐neutral or non‐stationary mode to the Rossby‐Haurwitz wave is shown in two different inner products. The analytical results obtained are used to test and discuss the accuracy of a numerical spectral method used for the normal mode stability study of arbitrary flow on a sphere. The comparison of the numerical and theoretical results shows that the numerical instability study method works well in case of such smooth solutions as the zonal flows and Rossby‐Haurwitz waves. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.