Abstract

In the recently designed and implemented test specification language FQL, relevant test goals are specified as regular expressions over program locations. To transition from single test goals to test suites, FQL describes suites as regular expressions over finite alphabets where each symbol corresponds to a regular expression over program locations. Hence, each word in a test suite expression yields a test goal specification. Such test suite specifications are in fact rational sets of regular languages (RSRLs). We show closure properties of general and finite RSRLs under common set theoretic operations. We also prove complexity results for checking equivalence and inclusion of star-free RSRLs and for checking whether a regular language is a member of a general or star-free RSRL. As the star-free (and thus finite) case underlies FQL specifications, the closure and complexity results provide a systematic foundation for FQL test specifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.