Abstract

Whipworms of the genus Trichuris are nematode parasites that infect mammals and can lead to various intestinal diseases of human and veterinary interest. The most intimate interaction between the parasite and the host intestine occurs through the anterior region of the nematode body, inserted into the intestinal mucosa during infection. One of the most prominent structures of the nematode surface found at the infection site is the bacillary band, a surface domain formed by a number of cells, mostly stichocytes and bacillary glands, whose structure and function are still under debate. Here, we used confocal microscopy, field emission scanning electron microscopy, helium ion microscopy, transmission electron microscopy and FIB-SEM tomography to unveil the functional role of the bacillary gland cell. We analyzed the surface organization as well as the intracellular milieu of the bacillary glands of Trichuris muris in high pressure frozen/freeze-substituted samples. Results showed that the secretory content is preserved in all gland openings, presenting a projected pattern. FIB-SEM analysis showed that the lamellar zone within the bacillary gland chamber is formed by a set of lacunar structures that may exhibit secretory or absorptive functions. In addition, incubation of parasites with the fluid phase endocytosis marker sulforhodamine B showed a time-dependent uptake by the parasite mouth, followed by perfusion through different tissues with ultimate secretion through the bacillary gland. Taken together, the results show that the bacillary gland possess structural characteristics of secretory and absorptive cells and unequivocally demonstrate that the bacillary gland cell functions as a secretory structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call