Abstract

This paper provides a new algorithm for tuning the two most effective parameters in nonlinear model predictive control (NMPC). Tuning is performed in two steps. First, a new method based on Barron’s formula, the bicoherence nonlinearity test, and inphase-quadrature demodulation is proposed to determine the number of hidden layer neurons in a two-layer neural network. In the second step, a fuzzy algorithm is introduced to tune the input weight matrix in the objective function to make the tuning problem more practical and precise. To show the effectiveness of the proposed method, several examples are discussed including a simple flow process and a more complex pH neutralization problem. The method is also evaluated in the laboratory scale pressure and level processes. It is shown that the proposed method leads to tuning the number of neurons and the weight matrix with an acceptable performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.