Abstract

Three-dimensional semi-empirical quantum chemical calculations of the structural and electronic properties of the fluorine intercalated graphite compound poly(dicarbon monofluoride)—(C 2F) n have been performed for several possible stacking sequences of puckered trans-cyclohexane chair layers. Such basic structure consisting from carbon hexagons in chair conformation has been confirmed. Furthermore, based on the geometry optimization, 12 structural sequences have been found to provide a local minima on the potential hypersurface, from which four are considerably more stable and one can assume their statistical distribution in the real poly(dicarbon monofluoride). This is also indicated by comparison with recent Kα XES spectra. In such arrangement the maximal entropy contribution leads to the minimum Gibbs energy of the system. Band structure calculations show that the most stable sequences have insulating properties, which implies that the real poly(carbon monofluoride) behaves as an insulator. The conductive properties of some less stable sequences result from particular interlayer interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.