Abstract
In the present paper we consider the countable state p-adic Potts model on . A main aim is to establish the existence of the strong phase transition for the model. In our study, we essentially use one dimensionality of the model. To prove the existence of the phase transition, we reduce the problem to the investigation of an infinite-dimensional nonlinear equation. We find a condition on weights to show that the derived equation has two solutions. We show that measures corresponding to first and second solutions are a p-adic Gibbs and generalized p-adic Gibbs measures, respectively. Moreover, it is proved that the p-adic Gibbs measure is bounded, and the generalized one is not bounded. This implies the existence of the strong phase transition. Note that it turns out that the obtained condition does not depend on values of the prime p and, therefore, an analogous fact is not true when the number of spins is finite. Note that, in the usual real case, if one considers a one-dimensional translation-invariant model with nearest neighbor interaction, then such a model does not exhibit a phase transition. Nevertheless, we should stress that our model exhibits a unique p-adic Gibbs measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.