Abstract

Let (X, L) be a polarized projective complex manifold. We show, by a simple toric one-dimensional example, that Mabuchi's K-energy functional on the geodesically complete space of bounded positive (1, 1)-forms in c(1)(L), endowed with the Mabuchi-Donaldson-Semmes metric, is not strictly convex modulo automorphisms. However, under some further assumptions the strict convexity in question does hold in the toric case. This leads to a uniqueness result saying that a finite energy minimizer of the K-energy (which exists on any toric polarized manifold (X, L) which is uniformly K-stable) is uniquely determined modulo automorphisms under the assumption that there exists some minimizer with strictly positive curvature current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.