Abstract

The “Stribeck curve” is a well-known concept, describing the frictional behavior of a lubricated interface during the transition from boundary and mixed lubrication up to full-film hydrodynamic/elastohydrodynamic lubrication. It can be found in nearly every tribology textbook/handbook and many articles and technical papers. However, the majority of the published Stribeck curves are only conceptual without real data from either experiments or numerical solutions. The limited number of published ones with real data is often incomplete, covering only a portion of the entire transition. This is because generating a complete Stribeck curve requires experimental or numerical results in an extremely wide range of operating conditions, which has been a great challenge. Also, numerically calculating a Stribeck curve requires a unified model with robust algorithms that is capable of handling the entire spectrum of lubrication status. In the present study, numerical solutions in counterformal contacts of rough surfaces are obtained by using the unified deterministic mixed elastohydrodynamic lubrication (EHL) model recently developed. Stribeck curves are plotted in a wide range of speed and lubricant film thickness based on the simulation results with various types of contact geometry using machined rough surfaces of different orientations. Surface flash temperature is also analyzed during the friction calculation considering the mutual dependence between friction and interfacial temperature. Obtained results show that in lubricated concentrated contacts, friction continuously decreases as speed and film thickness increase even in the full-film regime until extremely high speeds are reached. This is mainly due to the reduction of lubricant limiting shear stress caused by flash temperature rise. The results also reveal that contact ellipticity and roughness orientation have limited influence on frictional behaviors, especially in the full-film and boundary lubrication regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.