Abstract
The effect of magnetic field on the martensitic phase transformation in Ni2MnGa single crystals was investigated under compression. Reversible and one-way stress-assisted field-induced phase transformations were observed under low field magnitudes. The total work output levels achieved during reversible stress-assisted field-induced phase transformation are similar to that attained using field-induced martensite reorientation in NiMnGa magnetic shape memory alloys (MSMAs). However, the actuation stress levels are an order of magnitude higher. Possible magneto-microstructural mechanisms and necessary magnetic and mechanical conditions to accomplish field-induced phase transformation are discussed. A thermodynamical description is introduced to understand magnetic energy contributions to trigger the phase transformation. Materials design and selection guidelines are proposed to search for this new mechanism in other ferromagnetic materials that undergo thermoelastic martensitic phase transformation. The present work output levels achieved in the Ni2MnGa MSMA and the possibility of further increase place MSMAs above many currently available high frequency active materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.