Abstract

Recursive McCormick relaxations are among the most popular convexification techniques for binary polynomial optimization. It is well-understood that both the quality and the size of these relaxations depend on the recursive sequence and finding an optimal sequence amounts to solving a difficult combinatorial optimization problem. We prove that any recursive McCormick relaxation is implied by the extended flower relaxation, a linear programming relaxation, which for binary polynomial optimization problems with fixed degree can be solved in strongly polynomial time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.