Abstract
This paper presents a stochastic model for the individual-activation-factor proportionate normalized least-mean-square (IAF-PNLMS) adaptive algorithm operating under correlated Gaussian input data. The proposed approach uses the contragredient transformation to obtain an analytical solution for the normalized autocorrelation-like matrices arising from the model development. Model expressions describing the learning curve and the second-order moment of the weight-error vector for the IAF-PNLMS algorithm are derived taking into account the time-varying characteristic of the gain distribution matrix. As a consequence, the obtained model predicts very well the algorithm behavior for both transient and steady-state phases. Through simulation results, considering different operating scenarios, the accuracy of the proposed model is attested (via learning curve) for both complex- and real-valued input data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.