Abstract
In this paper we establish the existence and uniqueness of an $L^2(\mathbb{R})$ -valued solution for a one-dimensional Burgers’ equation perturbed by a space–time white noise on the real line. We show that the solution is continuous in space and time, provided the initial condition is continuous. The main ingredients of the proof are maximal inequalities for the stochastic convolution, and some a priori estimates for a class of deterministic parabolic equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.