Abstract
Random probability measures are the main tool for Bayesian nonparametric inference, with their laws acting as prior distributions. Many well-known priors used in practice admit different, though equivalent, representations. In terms of computational convenience, stick-breaking representations stand out. In this paper we focus on the normalized inverse Gaussian process and provide a completely explicit stick-breaking representation for it. This result is of interest both from a theoretical viewpoint and for statistical practice. Copyright 2012, Oxford University Press.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.