Abstract

Model compounds 3 and 5 have been studied to determine the orientation of the reacting double bonds in the transition state of the allylmetal–aldehyde addition. These models were designed to remove any intrinsic steric bias for the formation of the bicyclic products that would obfuscate a stereoelectronic contribution to the transition states. Model system 3 revealed a modest preference for the synclinal transition state, albeit in very low yields. Model system 5 underwent selective and largely Lewis acid independent cyclization primarily via a synclinal transition state. The high proximal selectivity observed in these cyclizations likely reflects the selectivity of an unhindered allylmetal–aldehyde addition for the synclinal transition state and results from a stereoelectronic preference, not an intrinsic steric bias, for the synclinal arrangement of double bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.