Abstract

This paper deals with the steplength selection in stochastic gradient methods for large scale optimization problems arising in machine learning. We introduce an adaptive steplength selection derived by tailoring a limited memory steplength rule, recently developed in the deterministic context, to the stochastic gradient approach. The proposed steplength rule provides values within an interval, whose bounds need to be prefixed by the user. A suitable choice of the interval bounds allows to perform similarly to the standard stochastic gradient method equipped with the best-tuned steplength. Since the setting of the bounds slightly affects the performance, the new rule makes the tuning of the parameters less expensive with respect to the choice of the optimal prefixed steplength in the standard stochastic gradient method. We evaluate the behaviour of the proposed steplength selection in training binary classifiers on well known data sets and by using different loss functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.