Abstract

ABSTRACT Here, we present a kinematical analysis of the Virgo cluster ultradiffuse galaxy (UDG) VCC 1287 based on data taken with the Keck Cosmic Web Imager (KCWI). We confirm VCC 1287’s association both with the Virgo cluster and its globular cluster (GC) system, measuring a recessional velocity of 1116 ± 2 km s−1. We measure a stellar velocity dispersion (19 ± 6 km s−1) and infer both a dynamical mass ($1.11^{+0.81}_{-0.81} \times 10^{9} \ \mathrm{M_{\odot }}$) and mass-to-light ratio (M/L) ($13^{+11}_{-11}$) within the half-light radius (4.4 kpc). This places VCC 1287 slightly above the well-established relation for normal galaxies, with a higher M/L for its dynamical mass than normal galaxies. We use our dynamical mass, and an estimate of GC system richness, to place VCC 1287 on the GC number–dynamical mass relation, finding good agreement with a sample of normal galaxies. Based on a total halo mass derived from GC counts, we then infer that VCC 1287 likely resides in a cored or low-concentration dark matter halo. Based on the comparison of our measurements to predictions from simulations, we find that strong stellar feedback and/or tidal effects are plausibly the dominant mechanisms in the formation of VCC 1287. Finally, we compare our measurement of the dynamical mass with those for other UDGs. These dynamical mass estimates suggest relatively massive haloes and a failed galaxy origin for at least some UDGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.