Abstract
In this paper, we study the steady-state queue size distribution of the discrete-timeGeo/G/1 retrial queue. We derive analytic formulas for the probability generating function of the number of customers in the system in steady-state. It is shown that the stochastic decomposition law holds for theGeo/G/1 retrial queue. Recursive formulas for the steady-state probabilities are developed. Computations based on these recursive formulas are numerically stable because the recursions involve only nonnegative terms. Since the regularGeo/G/1 queue is a special case of theGeo/G/1 retrial queue, the recursive formulas can also be used to compute the steady-state queue size distribution of the regularGeo/G/1 queue. Furthermore, it is shown that a continuous-timeM/G/1 retrial queue can be approximated by a discrete-timeGeo/G/1 retrial queue by dividing the time into small intervals of equal length and the approximation approaches the exact when the length of the interval tends to zero. This relationship allows us to apply the recursive formulas derived in this paper to compute the approximate steady-state queue size distribution of the continuous-timeM/G/1 retrial queue and the regularM/G/1 queue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.