Abstract

The objective of the present article is to theoretically investigate the static performance characteristics of rough porous hydrodynamic journal bearings of finite width with the effect of slip flow at the porous-film interface on the basis of the Beavers-Joseph criterion. In the analysis, the roughness is uniformly distributed over the bearing surfaces, with no preferred position or direction in the surface. With the concept of a stochastic process for the isotropic roughness patterns, the steady-state performance characteristics in terms of load capacity, end flowrate, and frictional parameters are obtained at different parameters of practical importance by solving simultaneously the continuity equation of flow in the porous bush and the Reynolds-type equation using the finite difference techniques. According to the results obtained, this analysis reveals that the influence of roughness on the steady-state performance of the journal bearing is physically apparent and not negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.