Abstract

Previous studies on emulsification have used the maximum drop size (dmax) or Sauter mean diameter ( ) to investigate the effect of viscosity on the drop size distribution (DSD), however, these parameters fall short for highly polydispersed emulsions. In this investigation (Part I), the steady‐state DSD of dilute emulsions is studied using of silicon oils with viscosities varying across six orders of magnitude at different stirring speeds. Different emulsification regimes were identified; our modeling and analysis is centered on the intermediate viscosity range where interfacial cohesive stresses can be considered negligible and drop size increases with viscosity. The bimodal frequency distributions by volume were well described using two log‐normal density functions. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3293–3302, 2018

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.