Abstract

A simple method is proposed for solving the Shcrodinger equation in the presence of a perturbation. Formally exact expressions are obtained in the form of infinite series for the energies and wave functions without assuming that the perturbation is small. Under the additional assumption that it is small (in accordance with a well-defined criterion of smallness) the obtained results yield directly the results of Schrodinger's perturbation theory. The developed approach contains in compact form various formulations of perturbation theory. The calculations use neither the complex technique of projection operators nor the complicated formalism of Green's functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.