Abstract

This paper is concerned with the existence and uniqueness questions on weak solutions of the stationary Navier–Stokes equations in an exterior domain Ω in R3, where the external force is given by divF with F=F(x)=(Fji(x))i,j=1,2,3. First, we prove the existence and uniqueness of a weak solution for F∈L3/2,∞(Ω)∩Lp,q(Ω) with 3/2<p<3 and 1≤q≤∞ provided ‖F‖L3/2,∞(Ω) is sufficiently small. Here Lp,q(Ω) denotes the well-known Lorentz space. We next show that weak solutions satisfying the energy inequality are unique for F∈L3/2,∞(Ω)∩L2(Ω) under the same smallness condition on ‖F‖L3/2,∞(Ω). This result provides a complete answer to the uniqueness question of weak solutions satisfying the energy inequality, the existence of which was proved by Leray in 1933. Finally, we establish the existence of weak solutions for data F in a very large class, for instance, in L3/2(Ω)+L2(Ω), which generalizes Leray’s existence result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.