Abstract
This paper deals with a multi-class priority queueing system with customer transfers that occur only from lower priority queues to higher priority queues. Conditions for the queueing system to be stable/unstable are obtained. An auxiliary queueing system is introduced, for which an explicit product-form solution is found for the stationary distribution of queue lengths. Sample path relationships between the queue lengths in the original queueing system and the auxiliary queueing system are obtained, which lead to bounds on the stationary distribution of the queue lengths in the original queueing system. Using matrix-analytic methods, it is shown that the tail asymptotics of the stationary distribution is exact geometric, if the queue with the highest priority is overloaded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.