Abstract

Purpose – The purpose of this paper is to explore a model for thermal convection in a plane layer when the density-temperature relation in the buoyancy term is quadratic. A heat source/sink varying in a linear fashion with a vertical height expressed as z was allowed, functioning as a heat sink in an area of the layer and as a heat source in the remainder. Design/methodology/approach – First, the authors present the governing equations of motion and derive the associated perturbation equations. Second, the authors introduce the linear and nonlinear analysis of the system. Third, the authors transform the system to velocity-vorticity-potential formulation and introduce a numerical study of the problem in three dimensions. Findings – First, the linear instability and nonlinear stability thresholds are derived. Second, the linear instability thresholds accurately predict the onset of instability. Third, the required time to arrive at the steady state increases as Ra tends to RaL . Fourth, the authors find that the convection has three different interesting patterns. Originality/value – With the modernday need for heat transfer or insulation devices in industry, particularly those connected with nanotechnology, the usefulness of a mathematical analysis of such resonance became apparent. Thus, this study is believed to be of value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.