Abstract

PurposeThis paper aims to review recent literature results on the equilibrium problem and the strengthening design of masonry vaults. Design/methodology/approachA Lumped Stress Method (LSM) is considered within the Heyman’s safe theorem, based on the definition of thrust surface of a masonry curved structure. In particular, the static problem of the vault is formulated by introducing a membrane continuous of the studied masonry structure to associate with a spatial truss through a nonconforming variational approximation of the thrust surface and membrane stress potential. A tensegrity approach based on a minimal mass design strategy, different strengths in tension and compression of the material is discussed within the strengthening strategy of masonry vaults. FindingsThe numerical results have highlighted the efficacy of the two numerical approaches to assess the vulnerability of existing structures and design optimal strengthening interventions of these structures. Originality/valueThe presented models can represent fast and useful tools to assess the vulnerability of existing structures and design optimal strengthening interventions with composite materials of these structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.