Abstract

Among all electromagnetic theories which (a) are derivable from a Lagrangian, (b) satisfy the dominant energy condition, and (c) in the weak field limit coincide with classical linear electromagnetics, we identify a certain subclass with the property that the corresponding spherically symmetric, asymptotically flat, electrostatic spacetime metric has the mildest possible singularity at its center, namely, a conical singularity on the time axis. The electric field moreover has a point defect on the time axis, its total energy is finite, and is equal to the ADM mass of the spacetime. By an appropriate scaling of the Lagrangian, one can arrange the total mass and total charge of these spacetimes to have any chosen values. For small enough mass-to-charge ratio, these spacetimes have no horizons and no trapped null geodesics. We also prove the uniqueness of these solutions in the spherically symmetric class, and we conclude by performing a qualitative study of the geodesics and test-charge trajectories of these spacetimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.