Abstract
We investigate the shuffle operation on regular languages represented by complete deterministic finite automata. We prove that $f(m,n)=2^{mn-1} + 2^{(m-1)(n-1)}(2^{m-1}-1)(2^{n-1}-1)$ is an upper bound on the state complexity of the shuffle of two regular languages having state complexities $m$ and $n$, respectively. We also state partial results about the tightness of this bound. We show that there exist witness languages meeting the bound if $2\le m\le 5$ and $n\ge2$, and also if $m=n=6$. Moreover, we prove that in the subset automaton of the NFA accepting the shuffle, all $2^{mn}$ states can be distinguishable, and an alphabet of size three suffices for that. It follows that the bound can be met if all $f(m,n)$ states are reachable. We know that an alphabet of size at least $mn$ is required provided that $m,n \ge 2$. The question of reachability, and hence also of the tightness of the bound $f(m,n)$ in general, remains open.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.