Abstract

Let Δ be a simplicial complex. We study the expansions of Δ mainly to see how the algebraic and combinatorial properties of Δ and its expansions are related to each other. It is shown that Δ is Cohen–Macaulay, sequentially Cohen–Macaulay, Buchsbaum or k-decomposable, if and only if an arbitrary expansion of Δ has the same property. Moreover, some homological invariants like the regularity and the projective dimension of the Stanley–Reisner ideals of Δ and those of their expansions are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.