Abstract

In this paper we consider the stabilization problem of unstable periodic orbits of discrete time chaotic systems by using a scalar input. We use a simple periodic delayed feedback law and present some stability results. These results show that all hyperbolic periodic orbits as well as some nonhyperbolic periodic orbits can be stabilized with the proposed method by using a scalar input, provided that some controllability or observability conditions are satisfied. The stability proofs also lead to the possible feedback gains which achieve stabilization. We will present some simulation results as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.